
Implementing Incremental
View Maintenance on
PostgreSQL

Yugo Nagata

PGConf.eu 2018
2018.10.26

Copyright © 2018 SRA OSS, Inc. Japan All rights reserved. 2

Who am I?
● Yugo Nagata

– Chief engineer @ SRA OSS, Inc. Japan
– PostgreSQL

● Technical support
● Consulting
● Education
● R&D

Copyright © 2018 SRA OSS, Inc. Japan All rights reserved. 3

Outline
● Introduction

– Views
– Materialize views

● Incremental View maintenance (IVM)

– Some approaches and our idea
● PoC Implementation of IVM

– Overview and details
– Examples
– Performance Evaluation

Copyright © 2018 SRA OSS, Inc. Japan All rights reserved. 4

Views

device
name pid 　G1 P1 　G2 P1
 G3 P2

parts
 pid price 　P1 10 　P2 20

V
name pid 　 price　G1 P1 　 10　G2 P1　 10
 G3 P2 20

* JOIN

CREATE VIEW V AS
 SELECT device_name, pid, price
 FROM devices d
 JOIN parts p
 ON d.pid = p.pid;

● A view is defined by a query
on base tables.

– Only the definition query is
stored instead of contents of
results.

● The result is computed when
a query is issued to a view. Table data Table data

Copyright © 2018 SRA OSS, Inc. Japan All rights reserved. 5

Materialized Views
CREATE MATERIALIZED VIEW V AS
 SELECT device_name, pid, price
 FROM devices d
 JOIN parts p
 ON d.pid = p.pid;

● Materialized views persist the
results in a table-like form.

● No need to compute the result
when a query is issued.

– Enables faster access to data.
● The data is not always up to date.

– Need maintenance.

device
name pid 　G1 P1 　G2 P1
 G3 P2

parts
 pid price 　P1 10 　P2 20

V
name pid 　 price　G1 P1 　 10　G2 P1　 10
 G3 P2 20

* JOIN

Materialized view
data

Table data Table data

Copyright © 2018 SRA OSS, Inc. Japan All rights reserved. 6

Creating Materialized Views
CREATE MATERIALIZED VIEW V AS
 SELECT device_name, pid, price
 FROM devices d
 JOIN parts p
 ON d.pid = p.pid;

● The data of a materialized view is
computed at definition time.

– This is similar to “CREATE TABLE
AS” statement.

– The result of the definition query is
inserted into the materialized view.

● Need maintenance to keep
consistency between the
materialized data and base tables.

insert

device
name pid 　G1 P1 　G2 P1
 G3 P2

parts
 pid price 　P1 10 　P2 20

V
name pid 　 price　G1 P1 　 10　G2 P1　 10
 G3 P2 20

* JOIN

Materialized view
data

Table data Table data

Copyright © 2018 SRA OSS, Inc. Japan All rights reserved. 7

Refreshing Materialized Views

● Replacing the contents
of a materialized view.

– Need to re-compute
the result of the
definition query.

insert

temporary table
device
name pid 　G1 P1 　G2 P1
 G3 P2

parts
 pid price 　P1 10 　P2 20

V
name pid 　 price　G1 P1 　 10　G2 P1　 10
 G3 P2 20

* JOIN

replace

Table data Table data

Materialized view
data

REFRESH MATERIALIZED VIEW V;

Copyright © 2018 SRA OSS, Inc. Japan All rights reserved. 8

Refreshing Materialized Views

insert

temporary table

merge

device
name pid 　G1 P1 　G2 P1
 G3 P2

parts
 pid price 　P1 10 　P2 20

V
name pid 　 price　G1 P1 　 10　G2 P1　 10
 G3 P2 20

* JOIN

diff

Table data Table data

Materialized view
data

REFRESH MATERIALIZED VIEW CONCURRENTLY V;

● With CONCURRENTLY option,
the materialized view is refreshed
without locking out concurrent
selects on the view.

– Require at least one UNIQUE
index on the materialized view.

● Need to re-compute the result of
the definition query, too.

Copyright © 2018 SRA OSS, Inc. Japan All rights reserved. 9

Incremental View Maintenance
● Incremental View Maintenance (IVM)

– Compute and apply only the incremental changes to the
materialized views

Base relationsBase relations

Materialized view

Base relations
Updated

base relations

Incremental maintenance

IVM

Refreshing

V=Q v (D)

D u

Qv

D'=u (D)

Qv

V new=Qv (D ')

δu (D)

δu (V)

Base relations
Updated

base relations

Updated
base relations

Updated
materialized View

re
c
o
m

p
u

ta
t io

n

View
definition

Update query

Base tables
delta

Materialized view
delta

Copyright © 2018 SRA OSS, Inc. Japan All rights reserved. 10

Approaches to IVM
● Tuple-based

– Specify the view tuples that need to be modified by computing diff sets.
● ID-based (Katsis et al., 2015)

– Assume the base tables have primary keys and these are propagated to the
materialized view.

– Identify the to-be-modified tuples in the view through their IDs.
● More efficient than Tuple-based

● OID-based (Masunaga et al., 2018)

– Use OIDs to identify tuples rather than primary keys.
● Allow to handle bag (multi-set) semantics.

– OID is a system column of a tuple in PostgerSQL
● Users do not need to concern about this.

Proof of Concept (PoC) implementation of IVM using OIDs
on PostgreSQL

Copyright © 2018 SRA OSS, Inc. Japan All rights reserved. 11

Basic idea

OID device_name pid

101 device1 P1

102 device2 P2

103 device3 P2

OID pid parts_name price

201 P1 part1 10

202 P2 part2 20

OID device_name pid price

301 device1 P1 10

302 device2 P2 20

303 device3 P2 20

OID in
matview

OIDs in
base tables

301 101, 201

302 102, 202

303 103, 202JOIN

oid map

devices

parts

V

Copyright © 2018 SRA OSS, Inc. Japan All rights reserved. 12

Basic idea

OID device_name pid

101 device1 P1

102 device2 P2

103 device3 P2

OID pid parts_name price

201 P1 part1 15

202 P2 part2 20

OID device_name pid price

301 device1 P1 15

302 device2 P2 20

303 device3 P2 20

OID in
matview

OIDs in
base tables

301 101, 201

302 102, 202

303 103, 202JOIN
devices

parts

V

If a tuple in parts table with OID=201 is updated,
only a tuple in the materialized view with OID=301 is affected.

oid map

Copyright © 2018 SRA OSS, Inc. Japan All rights reserved. 13

PoC implementation of
Incremental View Maintenance

using OIDs

Copyright © 2018 SRA OSS, Inc. Japan All rights reserved. 14

Overview
View definition

Materialized
view

After
triggers

Base talbesBase tables

OID map

Query
script

Delta
tables

Delta
tables

Delta
tables

Delta
tables

AFTER
triggers

View definition time
Tables modification time
View maintenance time

Copyright © 2018 SRA OSS, Inc. Japan All rights reserved. 15

Overview
1.View definition time

– Computing the materialized view data.
– Creating OID map between the base tables and the materialized view.
– Creating delta tables for the base tables.
– Creating AFTER triggers on the base tables.
– Generating query scripts to be run at view maintenance time.

View definition

Materialized
view

After
triggers

Base talbesBase tables

OID map

Query
script

Delta
tables
Delta
tables

Delta
tables

Delta
tables

AFTER
triggers

Copyright © 2018 SRA OSS, Inc. Japan All rights reserved. 16

Overview
2.Table modification time

– Logging changes on the base tables into the delta tables.

View definition

Materialized
view

After
triggers

Base talbesBase tables

OID map

Query
script

Delta
tables
Delta
tables

Delta
tables

Delta
tables

AFTER
triggers

Copyright © 2018 SRA OSS, Inc. Japan All rights reserved. 17

Overview
3.View maintenance time

– Executing the query scripts to perform incremental
maintenance of the materialized view.

View definition

Materialized
view

After
triggers

Base talbesBase tables

OID map

Query
script

Delta
tables
Delta
tables

Delta
tables

Delta
tables

AFTER
triggers

Copyright © 2018 SRA OSS, Inc. Japan All rights reserved. 18

Overview
View definition

Materialized
view

After
triggers

Base talbesBase tables

OID map

Query
script

Delta
tables

Delta
tables

Delta
tables

Delta
tables

AFTER
triggers

View definition time
Tables modification time
View maintenance time

Copyright © 2018 SRA OSS, Inc. Japan All rights reserved. 19

Before creating materialized views...
● Base tables have to have OIDs.

– Create tables with oids option

– or use ALTER TABLE

● System tables for storing IVM metadata
– pg_ivm_oidmap

● Mapping row OIDs in materialized view and base relations

– pg_ivm_script
● Storing query scripts to be executed in view maintenance time

– pg_ivm_deltamap
● Mapping table OIDs of base relations and their delta tables

CREATE TABLE mytable (i int) WITH OIDS;

ALTER TABLE mytable SET WITH OIDS;

Copyright © 2018 SRA OSS, Inc. Japan All rights reserved. 20

Materialized Views with OIDs
● Materialized views also have to be defined with OIDs.

– The current PostgreSQL implementation doesn’t
support materialized views with OIDs.

– Our PoC implementation allows materialized views to
have OIDs.

CREATE MATERIALIZED VIEW V WITH OIDS AS
 SELECT device_name, pid, price
 FROM devices d
 JOIN parts p ON d.pid = p.pid;

Copyright © 2018 SRA OSS, Inc. Japan All rights reserved. 21

View Definition Time (1)
Creating OID map

OID device_name pid

101 device1 P1

102 device2 P2

103 device3 P2

OID pid parts_
name

price

201 P1 part1 10

202 P2 part2 20

OID device_nam
e

pid price

301 device1 P1 10

302 device2 P2 20

303 device3 P2 20

viewrelid viewoid baserelid baseoid

3333 301 1111 101

3333 301 2222 201

3333 302 1111 102

3333 302 2222 202

3333 303 1111 103

3333 303 2222 202

JOIN

pg_ivm_oidmap

devices (relation OID: 1111) parts (relation OID: 2222)

V (relation OID: 3333)

● Row OIDs are collected during
executing the SELECT query.

insert

insert

Copyright © 2018 SRA OSS, Inc. Japan All rights reserved. 22

View Definition Time (2)
Query tree analysis

● Extract base tables from the view definition query.

V
(relation OID: 3333)

devices
(relation OID: 1111)

parts
(relation OID: 2222)

JOIN

_pg_ivm_3333

pg_ivm_1111_old

pg_ivm_1111_new

pg_ivm_2222_old

pg_ivm_2222_new

1. Create a schema and delta tables

2. Create AFTER triggers on base tables.

3. Generate query scripts to be run at view
maintenance time.

AFTER
trigger

AFTER
trigger

Query
scripts

Query
scripts

Query
scripts pg_ivm_script

insert

Copyright © 2018 SRA OSS, Inc. Japan All rights reserved. 23

Table Modification time (1)
● AFTER trigger on the base table is executed.

– OLD delta tuples are inserted into pg_ivm_xxx_old.
● Deleted tuples
● Old contents of updated tuples

– NEW delta tuples are inserted into pg_ivm_xxx_new.
● Inserted tuples
● New contents of updated tuples

OID pid parts_name price

201 P1 part1 10 → 15

202 P2 part2 20

parts (relation OID: 2222)

OID pid parts_name price

201 P1 part1 10

pg_ivm_2222_old

OID pid parts_name price

201 P1 part1 15

pg_ivm_2222_new

Copyright © 2018 SRA OSS, Inc. Japan All rights reserved. 24

Table Modification time (2)
● AFTER trigger on the base table is executed.

– When tuples are deleted or updated, old contents in the new delta table
are dropped.

● This allows a table to be modified multiple times.

OID pid parts_name price

201 P1 part1 15 → 25

202 P2 part2 20

parts (relation OID: 2222)

OID pid parts_name price

201 P1 part1 10

201 P1 part1 15

pg_ivm_2222_old

OID pid parts_name price

201 P1 part1 15

201 P1 part1 25

pg_ivm_2222_new

deleted

Copyright © 2018 SRA OSS, Inc. Japan All rights reserved. 25

View maintenance time (1)
● Syntax for Incremental View Maintenance (provisional)

● Execute query scripts in pg_ivm_query.

1. Delete old tuples from the materialized view

REFRESH MATERIALIZED VIEW INCREMENTAL V;

OID pid parts_name price

201 P1 part1 10

pg_ivm_2222_old

OID device_nam
e

pid price

301 device1 P1 10

302 device2 P2 20

303 device3 P2 20

V (relation OID: 3333)

viewrelid viewoid baserelid baseoid

3333 301 1111 101

3333 301 2222 201

3333 302 1111 102

3333 302 2222 202

3333 303 1111 103

3333 303 2222 202

pg_ivm_oidmap

deleted

deleted

Copyright © 2018 SRA OSS, Inc. Japan All rights reserved. 26

View maintenance time (2)
2. Insert new tuples into the materialized view

● JOIN of a base table and a NEW delta table results in new
tuples to-be-inserted into the materialized view.

OID device_name pid

101 device1 P1

102 device2 P2

103 device3 P2

OID device_nam
e

pid price

302 device2 P2 20

303 device3 P2 20

JOIN

devices (relation OID: 1111)

V (relation OID: 3333)

OID pid parts_name price

201 P1 part1 15

pg_ivm_2222_new

OID device_nam
e

pid price

304 device1 P1 15

insert

(filtering if WHERE
clause exits)

Copyright © 2018 SRA OSS, Inc. Japan All rights reserved. 27

View maintenance time (3)
● When both tables in JOIN are modified :

– Three JOIN results are inserted into the materialized view.

V
(relation OID: 3333)

devices
(relation OID: 1111) pg_ivm_2222_new

pg_ivm_1111_new
parts

(relation OID: 2222)

pg_ivm_1111_new pg_ivm_2222_new

JOIN

JOIN

JOIN
insert

insert

insert

Tuples generated in duplicate are removed.

Copyright © 2018 SRA OSS, Inc. Japan All rights reserved. 28

Examples (1)
● Materialized views of a simple join using pgbench tables:

CREATE MATERIALIZED VIEW mv_normal AS
 SELECT a.aid, a.abalance, t.tbalance
 FROM pgbench_accounts a
 JOIN pgbench_tellers t ON a.bid = t.bid
 WHERE t.tid in (1,2,3) ;

CREATE MATERIALIZED VIEW mv_ivm WITH OIDS AS
 SELECT a.aid, a.abalance, t.tbalance
 FROM pgbench_accounts a
 JOIN pgbench_tellers t ON a.bid = t.bid
 WHERE t.tid in (1,2,3) ;

Standard materialized view:

IVM materialized view:

– pgbench_accounts: 50,000,000 rows

– pgbench_tellers: 5,000 rows

– Materialized view: 300,000 rows

Scale factor of pgbench: 500

Copyright © 2018 SRA OSS, Inc. Japan All rights reserved. 29

Examples (2)
● Updating pgbench_accounts:

ivm_demo=# UPDATE pgbench_accounts SET abalance = abalance + 1 WHERE aid = 1;
UPDATE 1
Time: 9.749 ms

ivm_demo=# REFRESH MATERIALIZED VIEW mv_normal;
REFRESH MATERIALIZED VIEW
Time: 39979.546 ms (00:39.980)

ivm_demo=# REFRESH MATERIALIZED VIEW INCREMANTALLY mv_ivm;

REFRESH MATERIALIZED VIEW
Time: 537.591 ms

ivm_demo=# SELECT count(1) FROM (
 (SELECT * FROM mv_normal EXCEPT SELECT * FROM mv_ivm)
 UNION ALL
 (SELECT * FROM mv_ivm EXCEPT SELECT * FROM mv_normal)) q;
 count

 0
(1 row)

Updating a row in pgbech_accounts

Confirming the two results are same

IVM is (x 74) faster

Copyright © 2018 SRA OSS, Inc. Japan All rights reserved. 30

Examples (3)
● Updating pgbench_accounts:

– IVM is faster than the standard refresh.
– The execution time increases as the number of updated rows increases.

500 5000 50000 500000
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

Updated rows

T
im

e
 (

m
s)

Standard refresh

IVM

Copyright © 2018 SRA OSS, Inc. Japan All rights reserved. 31

Examples (4)
● Updating pgbench_tellers:

ivm_demo=# UPDATE pgbench_tellerss SET tbalance = tbalance + 1 WHERE tid = 5;
UPDATE 1
Time: 10.007 ms

ivm_demo=# REFRESH MATERIALIZED VIEW INCREMENTALLY mv_ivm;
REFRESH MATERIALIZED VIEW
Time: 512.998 ms

ivm_demo=# UPDATE pgbench_tellers SET tbalance = tbalance + 1 WHERE tid = 1;
UPDATE 1
Time: 9.201 ms

ivm_demo=# REFRESH MATERIALIZED VIEW INCREMENTALLY mv_ivm;
REFRESH MATERIALIZED VIEW
Time: 19555.446 ms (00:19.555)

Updating a row in pgbech_tellers
 which is unrelated to the view.

CREATE MATERIALIZED VIEW mv_ivm WITH OIDS AS
 SELECT a.aid, a.abalance, t.tbalance
 FROM pgbench_accounts a
 JOIN pgbench_tellers t ON a.bid = t.bid
 WHERE t.tid in (1,2,3) ;

IVM is fast because of nothing to do

Updating a row in pgbech_tellers
 which is related to the view.

Copyright © 2018 SRA OSS, Inc. Japan All rights reserved. 32

Examples (5)
● Updating pgbench_tellers:

– IVM is not so better than the standard refresh.
● A row update in pgbench_tellers is relating to all rows of pgbench_accounts.
● 3 rows update causes update of ALL rows in the view.

– Overhead of the oidmap maintenance

1 2 3
0

10000

20000

30000

40000

50000

60000

Updated rows

T
im

e
 (

m
s)

CREATE MATERIALIZED VIEW mv_ivm WITH OIDS AS
 SELECT a.aid, a.abalance, t.tbalance
 FROM pgbench_accounts a
 JOIN pgbench_tellers t ON a.bid = t.bid
 WHERE t.tid in (1,2,3) ;

Standard refresh

IVM

Copyright © 2018 SRA OSS, Inc. Japan All rights reserved. 33

Current Restrictions
● The current PoC implementation of IVM is very simplified.

● A lot of restrictions

– Only simple join view is supported.
● Join of two base tables, selection, and projection
● Not supporting:

– Aggregation, multiple joins, sub queries, ...etc.

– Plans used for creating and refreshing the view is limited.
● Nested loop join, merge join, sort, seqscan
● Not supporting:

– Hash-join, bitmap scan, parallel scan, …etc.

Copyright © 2018 SRA OSS, Inc. Japan All rights reserved. 34

About using OIDs
● OIDs in our implementation:

– Identify tuples in base relations and materialized views.
– Provide mapping between these tuples.

● Problems:

– 32-bit integer: It is not large enough to provide uniqueness in large tables.
– Using a user-created table's OID column as a primary key is discouraged.
– It is hard to handle in the implementation …

→ Other better way might need to be investigated.

Copyright © 2018 SRA OSS, Inc. Japan All rights reserved. 35

Summary
● PoC implementation of IVM on PostgreSQL using OIDs

– Fast refresh of a materialized view
– It would be efficient when small fraction of a large base table is update.

● Future plans:

– Eliminate performance issues:
● Overhead of the oid mapping maintenance.
● Direct update of the materialized view instead of delete & insert.

– Support more generally defined view and plans.
– Avoid to rely on OIDs:

● Using unique index on base tables?

Copyright © 2018 SRA OSS, Inc. Japan All rights reserved. 36

Thank you

	ページ 1
	ページ 2
	ページ 3
	ページ 4
	ページ 5
	ページ 6
	ページ 7
	ページ 8
	ページ 9
	ページ 10
	ページ 11
	ページ 12
	ページ 13
	ページ 14
	ページ 15
	ページ 16
	ページ 17
	ページ 18
	ページ 19
	ページ 20
	ページ 21
	ページ 22
	ページ 23
	ページ 24
	ページ 25
	ページ 26
	ページ 27
	ページ 28
	ページ 29
	ページ 30
	ページ 31
	ページ 32
	ページ 33
	ページ 34
	ページ 35
	ページ 36

